Files
towerDataSplit/towerDataSplit.py

127 lines
4.9 KiB
Python
Raw Normal View History

import pandas as pd
import os
import time
import argparse
class DataSplit:
def __init__(self, inputDataPath, outputDataPath):
self.inputPath = inputDataPath
self.outputPath = outputDataPath
def create_directory(self, directory):
"""
可直接创建深层文件夹例如如果B和C没有直接创建/A/B/C/D也能成功
:param directory:
:return:
"""
if not os.path.exists(directory): # 判断所在目录下是否有该文件名的文件夹
os.makedirs(directory)
def read_data(self, file_path):
"""
读取csv数据并修改信息以适配分割后的csv
:param file_path:
:return:
"""
guess_column_number = 10000
df = pd.read_csv(file_path, header=None, sep=',', names=range(guess_column_number))
correct_column_number = max(df.iloc[2, 6], df.iloc[4, 6]) + 3
df.drop(list(range(int(correct_column_number), guess_column_number)), axis=1,
inplace=True) # inplace=True会就地修改不会创建副本
# df = pd.read_csv(file_path, header=None, sep=',', names=range(int(correct_column_number))) # 重新读文件
# 修改信息
df.iloc[1, 3] = 2
# 任总:老师嫌采集时间过长,想每采集一次地物都采集一次天空
# csv中的2个光谱仪分别有6个位置的数据位置1、3、5实际上都是测的光纤位置1的数据测天空所以分割后都改为P1
# 位置2、4、6实际上都是测的地物向下所以分割后都改为对应的实际位置P2、P3、P4
df.iloc[9, 0] = df.iloc[9, 0].replace("3", "1")
df.iloc[10, 0] = df.iloc[10, 0].replace("4", "3")
df.iloc[11, 0] = df.iloc[11, 0].replace("5", "1")
df.iloc[12, 0] = df.iloc[12, 0].replace("6", "4")
df.iloc[15, 0] = df.iloc[15, 0].replace("3", "1")
df.iloc[16, 0] = df.iloc[16, 0].replace("4", "3")
df.iloc[17, 0] = df.iloc[17, 0].replace("5", "1")
df.iloc[18, 0] = df.iloc[18, 0].replace("6", "4")
return df
def split_data(self, df):
"""
分割pandas的dataframe的对应的那些行到新的dataframe中并返回
:param df:
:return:
"""
df1 = df.iloc[[0, 1, 2, 3, 4, 5, 6, 7, 8, 13, 14]]
df2 = df.iloc[[0, 1, 2, 3, 4, 5, 6, 9, 10, 15, 16]]
df3 = df.iloc[[0, 1, 2, 3, 4, 5, 6, 11, 12, 17, 18]]
return df1, df2, df3
def write_data(self, df, file_path):
# 写csv方式1的问题有的整数会在后面加.0例如77777 → 77777.0后期在c# 写的easysif中不能直接转int需要先转double在转int
df.to_csv(file_path, index=False, header=False)
# 写csv方式2也有方式1的问题推测pandas是基于numpy实现的所以numpy具有此问题那么pandas也具有此问题
# np.array(df1).tofile(file_path_out1, sep=',')
def start_split_process(self):
"""
分割处理数据主函数
:return:
"""
time_start = time.time() # 记录开始时间
directories = os.listdir(self.inputPath)
self.validFiles = []
for directory in directories:
directory1_tmp = os.path.join(self.outputPath, "split1", directory)
directory2_tmp = os.path.join(self.outputPath, "split2", directory)
directory3_tmp = os.path.join(self.outputPath, "split3", directory)
self.create_directory(directory1_tmp)
self.create_directory(directory2_tmp)
self.create_directory(directory3_tmp)
files = os.listdir(os.path.join(self.inputPath, directory))
for file in files:
file_path = os.path.join(self.inputPath, directory, file)
if os.path.splitext(file_path)[1] != '.csv':
continue
df = self.read_data(file_path)
df1, df2, df3 = self.split_data(df)
file_path_out1 = os.path.join(directory1_tmp, file)
file_path_out2 = os.path.join(directory2_tmp, file)
file_path_out3 = os.path.join(directory3_tmp, file)
self.write_data(df1, file_path_out1)
self.write_data(df2, file_path_out2)
self.write_data(df3, file_path_out3)
time_end = time.time() # 记录结束时间
time_sum = time_end - time_start # 计算的时间差为程序的执行时间,单位为秒/s
print("处理用时:%d" % time_sum)
return 0
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("inputDataPath", help="输入数据路径")
parser.add_argument("outputDataPath", help="输出路径。")
args = parser.parse_args()
data_split = DataSplit(args.inputDataPath, args.outputDataPath)
data_split.start_split_process()
print("completed!!")